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❖Dramatic increase in the availability of dynamic data from 
various information sources
❖ Example: Social media networks, smart sensors, stock market, etc. 

❖Facebook (over 2.3 billion active usersa), Twitter (300 

million active usersb), LinkedIn (610 million usersc) 

❖ Network dynamism - relationships, followers and connections

❖ Continuously evolving networks

❖Opportunities and Applications:
❖ Large datasets significantly extends our understanding of underlying 

social phenomenon

❖ Disaster management, Health care, Business analytics
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Challenges

Network size:
– Computation time and resources increases dramatically with network size

– Restricts the utility of social network analysis (SNA) in time critical 
applications

Network Dynamism:
– On average about 500 million new tweets every daya

– In many real-time social media analytics and disaster management, the 
underlying network is evolving

– Restarting  or analyzing static snapshot of the network will often yield poor 
performance

Load Balancing:
– Distributed storage and dynamism causes load imbalance

– Most social networks are small-world networks and exhibit power law 
characteristics 
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Our Focus

• Handle dynamic changes as quickly as possible

• Maximize the accuracy of the network state and analysis

• Reduce overhead during load balancing

• Key idea is to balance the workload and reduce idleness 

without network repartitioning
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Current Works

• Dynamic graph partitioning methods
– Involves some form of data migration to reduce imbalance

– Vertex migration, Label propagation, Repartitioning

– [Khayyat2013, Tsourakakis2014, Khandelwal2017]

• Mizan [Khayyat2013], a graph load balancing system migrates the vertices 
to different processors based on the runtime metrics such as the number of 
outgoing messages, incoming messages and response time for each step. 

• Vaquero et al. [Vaquero2013] proposed a load balancing system where the 
vertex migration is decided based on the number of neighbors.

• Hermes [Nicoara2015] , provides a dynamic graph repartitioning algorithm 
to reduce the number of edges between partitions. However, their main 
focus is on providing graph management rather than graph analysis.
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Anytime Anywhere Framework for 
Network Analysis

• Designing efficient parallel/distributed algorithms for 
– Handling large and dynamic network analysis. 

– Efficiently incorporate dynamic changes and minimize 
recomputations.

– Providing non-trivial intermediate results.

– Computational platform independent.

• Centrality, is a key measure to understand and analyze actor 
roles in social network.
– Used to identify influential and critical actors in the network.

– Various centrality measures: Degree centrality,  Closeness 
centrality [Yannick2009], Betweenness centrality
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Anytime Anywhere Phases for 
Network Analysis
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Edge deletion algorithm - Recap

• In this work we focus on edge deletion [Santos2016]

– Has one of the higher workloads but does not create a 

large memory imbalance among processors

• Algorithm

1. Communicate edge to be deleted along with the target 

node’s distance vector to all processor

2. Identify affected paths in all processors and reset it (to ∞)

3. Recalculate all the affected paths using the neighbors 

distance vector.
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Edge Deletion – Pseudo-code

Recalculate affected shortest paths
WHILE Q is not empty

Dequeue 𝑢, 𝑣 from Q

FOR EACH neighbor 𝑢′ of 𝑢 in sub-graph 𝐺𝑖
IF 𝐷𝑉𝑖 𝑢 𝑣 > 𝐷𝑉𝑖 𝑢 𝑢′ + 𝐷𝑉𝑖 𝑢

′ 𝑣
𝐷𝑉𝑖 𝑢 𝑣 = 𝐷𝑉𝑖 𝑢 𝑢′ + 𝐷𝑉𝑖 𝑢

′ 𝑣
mark 𝐷𝑉𝑖 𝑢 𝑣 as updated

u1 v1

u1v1 == min(a1v1, a2v1 , a3v1)

a1

a2

a3



Deferring Changes

• Balance the number of affected paths 
recalculated across processors in each 
iteration.
– Portion of the workload is moved to future 

iterations 

– Reduces load imbalance and idleness 
among processors

• Figure shows handling average number 
of affected paths (AP)
– Non-buffer-based method: Recalculate all 

the affected path in each iteration

– Buffer-based method: Balances the number 
of affected paths recalculated

• Constraints
– Max Buffer Size 𝐵 , in terms of number of 

the affected paths

– Max number of recombination steps that an 
affected path can be deferred 𝑇
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Deferring Changes
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𝐻𝑖,𝑘
′ =

min max
σ𝑗=1𝑡𝑜𝑃 ෡𝐻𝑗,𝑘

𝑃
, ෡𝐻𝑖,𝑘 − 𝐵 , ෡𝐻𝑖,𝑘 , 𝑘 ≤ 𝑇

min max
σ𝑗=1𝑡𝑜𝑃 ෡𝐻𝑗,𝑘

𝑃
, ෡𝐻𝑖,𝑘 − 𝐵, ෡𝐻𝑖,𝑘−𝑇 −෍

𝑟=𝑘−𝑇

𝑘−1

𝐻𝑖,𝑟
′ , ෡𝐻𝑖,𝑘 , 𝑘 > 𝑇

• Where, 

– 𝐻𝑖,𝑘
′ is the number of affected paths selected to be recalculated on 

processor 𝑝𝑖 at iteration 𝑘

– ෡𝐻𝑖,𝑘 is the number of overall affected paths on processor 𝑝𝑖 at iteration 
𝑘 that are available to be recalculated, including the ones carried over 
from previous iterations. 

– 𝑃 is the number of processors

– 𝐵 and 𝑇 are the constraints



Deferring Changes
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𝐻𝑖,𝑘
′ =

min max
σ𝑗=1𝑡𝑜𝑃 ෡𝐻𝑗,𝑘

𝑃
, ෡𝐻𝑖,𝑘 − 𝐵 , ෡𝐻𝑖,𝑘 , 𝑘 ≤ 𝑇

min max
σ𝑗=1𝑡𝑜𝑃 ෡𝐻𝑗,𝑘

𝑃
, ෡𝐻𝑖,𝑘 − 𝐵, ෡𝐻𝑖,𝑘−𝑇 −෍

𝑟=𝑘−𝑇

𝑘−1

𝐻𝑖,𝑟
′ , ෡𝐻𝑖,𝑘 , 𝑘 > 𝑇

• Average number of affected paths across all 

processors that are available to recalculate
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min max
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𝑃
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min max
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𝑘−1

𝐻𝑖,𝑟
′ , ෡𝐻𝑖,𝑘 , 𝑘 > 𝑇

• Average number of affected paths across all 

processors that are available to recalculate

• To maintain the buffer constraint 𝐵
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𝐻𝑖,𝑘
′ =

min max
σ𝑗=1𝑡𝑜𝑃 ෡𝐻𝑗,𝑘

𝑃
, ෡𝐻𝑖,𝑘 − 𝐵 , ෡𝐻𝑖,𝑘 , 𝑘 ≤ 𝑇

min max
σ𝑗=1𝑡𝑜𝑃 ෡𝐻𝑗,𝑘

𝑃
, ෡𝐻𝑖,𝑘 − 𝐵, ෡𝐻𝑖,𝑘−𝑇 −෍

𝑟=𝑘−𝑇

𝑘−1

𝐻𝑖,𝑟
′ , ෡𝐻𝑖,𝑘 , 𝑘 > 𝑇

• Average number of affected paths across all processors 
that are available to recalculate

• To maintain the buffer constraint 𝐵
• To ensure that an affected path is not deferred for more 

than 𝑇 iterations



Buffer-based method
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• Two types of Buffer-based method for deferring changes
– Type A and Type B

– In both cases the workload for each processor is same for communication, 
identification and refinement

• Non-Buffer-based method – Recalculate all the affected paths using the 
neighbors distance vector.

• Type A – Recalculate affected paths such that the workload is balanced 
across processors and defer the rest to future iterations

• Type B – Recalculate the affected paths only on the processor with the edge

• By performing theoretical analysis we show that 
– For most conditions with reasonable assumptions 

– Our method performs asymptotically no worse than the non-buffer-based 
method for edge deletion during closeness centrality computation.



• Current load balancing methods focus on vertex 
migration and dynamic graph partitioning.

• We show that load balancing can also be performed by 
deferring the changes across time steps. 
– Without incurring the data migration overhead

• In future, we will validate our method experimentally 
using real-world and synthetic networks

• We will also examine the performance of this approach 
for other types of changes 
– Vertex additions/deletions, edge additions and edge weight 

changes

Conclusion & Future Directions 
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