
A Parallel LFR-like Benchmark for

Evaluating Community Detection

Algorithms

George M. Slota and Jack Garbus

Rensselaer Polytechnic Institute

ParSocial 2020

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology &
Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the
U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525.

1 / 10



What is community detection?
Community Detection: Basic problem

We have some real-world interaction network (e.g., Facebook)
Community detection: identifying clusters within the network
Why: communities are often homogeneous (like-attracts-like) so we can
often infer information about community members.

2 / 10



Community Detection Algorithms: Evaluation
How do we evaluate algorithm solution quality?

Given some community detection algorithm, how can
we determine the quality of its output?

Ideally: Evaluate on real-world datasets with “known”
communities
– Very few such datasets exists, none at HPC/real-world
social network scale
Measure: Calculate some global measurement such as
modularity (how well-clustered is the solution)
Compare: Generate synthetic networks with an
“ground-truth” set of communities
– This is the approach of the well-known LFR Benchmark
– This work focuses on generating large-scale LFR-like test
benchmarks
– For various reasons, this approach is highly preferred to
modularity evaluation

3 / 10



Current State-of-the-Art: LFR
For benchmark graph generation with engineered solutions

“Lancichinetti–Fortunato–Radicchi” (lfr)1:

With >1600 citations, this is a de facto standard

Generates approximate solution to test against
– Uses tunable parameter for community coherence: µ

Limited scalability: best implementation takes ∼17hrs to
generate ∼10B edges2

– Original code takes hours for million+ edge graphs

Our recent work: Adapted-BTER3

Generates graphs that match an input degree distribution, but
not a community size distribution

However: scales to trillion-edge graph generation (and takes
only minutes!)

1[Lancichinetti et al., 2008]
2[Hamann et al., 2018]
3[Slota et al., 2019]

4 / 10



LFR Benchmark Graph Generation
Community Detection Algorithms: Evaluating with a ground truth

Generate a synthetic network with some set of “communities”

Include a mixing parameter – µ – that controls the ratio of inter- to
intra-community edges: µ ≈ inter-comm. edges

total edges

– Effectively, this determines how well-defined the communities are

Evaluate how well an algorithm’s output matches the defined solution
– Commonly utilize Normalized Mutual Information (NMI)
– Compare how well algorithms perform as you increase edge mixing via µ

→

5 / 10



Scalable Parallel Methods for LFR-like Generation
Benchmark graph generation for community detection

We implement two hierarchical parallel approaches:
– Shared-Memory OpenMP: Configuration Model Chung-Lu (CMCL)
– Distributed-Memory MPI+OpenMP: Two-level Chung-Lu (TLCL)

Both follow the same general algorithmic approach:

Phase 1: Initialize input distributions
– Power-law distributions for community sizes and the degree
distribution; can be generated in parallel

Phase 2: Parallel assignment of vertices to communities

Phase 3: Parallel internal edge generation
– Use configuration model or Chung-Lu to generate
intra-community edges

Phase 4: External edge generation
– Use Chung-Lu to generate inter-community edges

6 / 10



In-practice Benchmark Performance
Running on generated graphs with the Louvain Algorithm

We run the Louvain Algorithm [Blondel et al., 2008] on networks
generated with CMCL, TLCL, and LFR and evaluate NMI
Parameters: Num Vertices = 1024, 4096, 16384; Avg. Degree =
16, 24, 32; µ = 0.1 . . . 0.9
We note near-identical outputs from all three benchmarks

1024_16 1024_24 1024_32

4096_16 4096_24 4096_32

16384_16 16384_24 16384_32

0
0.2
0.4
0.6
0.8

1

0
0.2
0.4
0.6
0.8

1

0
0.2
0.4
0.6
0.8

1

0.
1

0.
3

0.
5

0.
7

0.
9

0.
1

0.
3

0.
5

0.
7

0.
9

0.
1

0.
3

0.
5

0.
7

0.
9

Target mu

N
M

I 
(L

o
u
va

in
)

LFR CMCL TLCL

7 / 10



Strong Scaling of CMCL

We run strong scaling experiments with CMCL on single Intel
Knight’s Landing node (17-272 threads)

We run using degree distributions from well-known test instances
Times given are the sum time for generating 9 benchmark graphs
with µ = 0.1 . . . 0.9
It takes about 15 minutes in total to generate a full set of instances
with over 3 billion edges each from the uk-2007 distribution

LiveJournal WikiTalk Friendster

RMAT−26 Twitter uk−2007

12

16

20

10

15

20

25

400
600
800

1000

400

800

1200

400

800

1200

1600

1000
1500
2000
2500
3000

17 34 68 136 272 17 34 68 136 272 17 34 68 136 272

Number of KNL Threads

S
u

m
 G

en
. 

T
im

e 
(s

)

8 / 10



Strong Scaling of TLCL

We run strong scaling experiments with TLCL on 16 Intel
Knight’s Landing nodes (272 threads each)

We run using the same instances and setup as the CMCL
experiments
We have on average over 10× speedup vs. shared-memory
All 9 instances for the 3 billion edge uk-2007 input takes in total
only 1.5 minutes to generate

LiveJournal WikiLinks Friendster

RMAT_26 Twitter uk−2007

5

10

15

4
8

12
16

0
100
200
300
400

0

200

400

600

100
200
300
400
500

500

1000

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16

Number of KNL Nodes (272 threads)

S
u

m
 G

en
. 

T
im

e 
(s

)

9 / 10



Conclusions and thanks!

Major takeaways:

We develop a scalable method for generating LFR-like
community detection algorithm benchmarking graphs
This generates test instances at HPC-scale –
orders-of-magnitude larger than the serial LFR code and
order-of-magnitude faster than recent parallel LFR codes
Code to be released to
https://github.com/HPCGraphAnalysis/SAGE

pending copyright approvals

Thank you! Contact below with any questions.

slotag@rpi.edu www.gmslota.com
10 / 10


