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Introduction/Motivation/Goal

• YouTube is 2nd largest social media 
platform

• 10 Exabytes of data has been generated by 
YouTube

• Challenges of  YouTube Analysis–

• Slow sequential processing of API 
requests

• API key daily usage limits
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Data Collection Methodology

1. Obtain a YouTube Data API key

2. Develop a function to submit & process 
YouTube Data API requests

3. Store data for analysis
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API requests for data

Database

YouTube Data API



Function Overview
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## - Single Process - ## 

def single_process_video(video_ids): 

    for video_id in video_ids: 

        process_video(video_id) 

 

Looping through content IDs sequentially, making API requests 

one at a time



Function Overview
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## - Parallel Process - ## 

from pathos.multiprocessing import ProcessPool as Pool 

 

def parallel_process_video(video_ids): 

    #Creating a processing pool of 5 processes 

    process_pool = Pool(nodes=5) 

 

    #Mapping each video_id onto the process_video function 

    process_pool.uimap(process_video, video_ids) 

 

    process_pool.join() 

    process_pool.close() 
 

Splitting the Content IDs between 5 Nodes, making API requests 

in parallel



Performance

• Based on data processing times 
for FPSRussia channel

• A 400% decrease in processing 
time

• Biggest improvements from 1-5 
processes

Kready et al. (COSMOS) IPDPS 2020 7



Conclusion/Future Work

• Parallelization of YouTube data collection dramatically decreases 
processing time
• I/O bottlenecks are distributed across multiple processes

• CPU can switch between processes while awaiting an API response

• Parallelized API requests can be used on other social media sites

• Twitter

• Reddit
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Thank You

For question/comments please email: 

jkready@ualr.edu

nxagarwal@ualr.edu
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