
YouTube Data Collection Using
Parallel Processing

Joseph Kready, Shishila Awung Shimray, Muhammad Nihal Hussain,

Nitin Agarwal
Department of Information Science

University of Arkansas at Little Rock (UALR)
Little Rock, USA

{jkready, sxawungshim, mnhussain, nxagarwal}@ualr.edu

Agenda

• Motivation

• Data Collection Methodology

• Function Overview

• Performance

• Conclusion

• Future Work

Kready et al. (COSMOS) 2IPDPS 2020

Introduction/Motivation/Goal

• YouTube is 2nd largest social media
platform

• 10 Exabytes of data has been generated by
YouTube

• Challenges of YouTube Analysis–

• Slow sequential processing of API
requests

• API key daily usage limits

Kready et al. (COSMOS) IPDPS 2020 3

Data Collection Methodology

1. Obtain a YouTube Data API key

2. Develop a function to submit & process
YouTube Data API requests

3. Store data for analysis

Kready et al. (COSMOS) IPDPS 2020 4

API requests for data

Database

YouTube Data API

Function Overview

Kready et al. (COSMOS) IPDPS 2020 5

- Single Process - ##

def single_process_video(video_ids):

 for video_id in video_ids:

 process_video(video_id)

Looping through content IDs sequentially, making API requests

one at a time

Function Overview

Kready et al. (COSMOS) IPDPS 2020 6

- Parallel Process - ##

from pathos.multiprocessing import ProcessPool as Pool

def parallel_process_video(video_ids):

 #Creating a processing pool of 5 processes

 process_pool = Pool(nodes=5)

 #Mapping each video_id onto the process_video function

 process_pool.uimap(process_video, video_ids)

 process_pool.join()

 process_pool.close()

Splitting the Content IDs between 5 Nodes, making API requests

in parallel

Performance

• Based on data processing times
for FPSRussia channel

• A 400% decrease in processing
time

• Biggest improvements from 1-5
processes

Kready et al. (COSMOS) IPDPS 2020 7

Conclusion/Future Work

• Parallelization of YouTube data collection dramatically decreases
processing time
• I/O bottlenecks are distributed across multiple processes

• CPU can switch between processes while awaiting an API response

• Parallelized API requests can be used on other social media sites

• Twitter

• Reddit

Kready et al. (COSMOS) IPDPS 2020 8

Acknowledgments

This research is funded in part by the

• U.S. National Science Foundation,

• U.S. Office of Naval Research,

• U.S. Air Force Research Lab,

• U.S. Army Research Office,

• U.S. Defense Advanced Research Projects Agency, and

• Jerry L. Maulden/Entergy Fund at the UA-Little Rock.

Any opinions, findings, and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the funding organizations. The
researchers gratefully acknowledge the support.

Kready et al. (COSMOS) IPDPS 2020 9

Thank You

For question/comments please email:

jkready@ualr.edu

nxagarwal@ualr.edu

Kready et al. (COSMOS) IPDPS 2020 10

mailto:mnhussain@ualr.edu
mailto:nxagarwal@ualr.edu

